

Establishing a Heart Valve Center in The Pediatric Population

Cardiac Center

Meghan K Metcalf, MD, Trevor Williams, MD, Yan Wang, RDCS, Jonathan M Chen, MD, Muhammed AK Nuri, MD, Jill J Savla, MD, MSCE, Matthew A Jolley, MD, Michael D Quartermain, MD, Lindsay S Rogers, MD. Division of Cardiology, The Children's Hospital of Philadelphia.

BACKGROUND

- Heart Valve Centers of Excellence are well-described in adults, however not in the pediatric population.
- Congenital and acquired valve diseases are some of the commonest and most severe forms of cardiac disease in pediatrics, and guidelines are lacking.
- Infants and children have valvular pathology that is distinct from that of adults, as well as surgical considerations that vary based on age, size, growth potential, and lifestyle.
- The Pediatric Heart Valve Center at the Children's Hospital of Philadelphia (CHOP) was established to fill the role of a center of excellence in pediatric valve disease.

PROGRAM STRUCTURE

- Small, multi-disciplinary group of echo-trained cardiologists, cardiothoracic surgeons, cardiac interventionalist, cardiac anesthesia, cardiac sonographers, and advanced cardiac imaging trainees.
- Grant funding received from CHOP Frontier program
- At inception, the team was kept small, ensuring highly engaged individuals who were allotted dedicated time to focus on valve center initiatives and skill development.
- Dedicated program coordinator and research nurse work to referral volume, coordinate clinical manage information/scheduling, facilitate meetings, and maintain record of clinical recommendations and outcomes.
- Biweekly patient review meetings allow discussion of referred cases, with recommendations for further imaging, need for intervention, and options for surgical intervention decided; monthly educational meetings allow team to re-review cases, discuss learning experiences, and advance knowledge of relevant topics.
- Ongoing collaboration with clinical research arm, including 3D modeling from both 3D echo and cross-sectional imaging for surgical planning.

- 24 had surgery following a valve center discussion • Types of valve intervention included:

 - 4 mitral valve
 - 4 common AV valve

Figure 1. Left: 3D TEE images demonstrating a perforated right coronary cusp (left, dashed circle) with insufficiency originating through the perforation (middle, dashed circle). Findings were confirmed intraoperatively (right, arrow).

Figure 2. 3D TEE, midesophageal 0° view of tricuspid valve in HLHS; patient B. (A) open valve enface from ventricle looking up, with a notably deficient septal leaflet, (B) prolapse of the posterior leaflet from 4chamber view. (C) enface view of the tricuspid valve in systole; surgeon's view from atrium. There is significant prolapse of the posterior valve leaflet, (D) same view with color, the jet of regurgitation originates from the anterior/posterior coaptation gap along the prolapsing posterior leaflet.

EARLY CASES AND IMAGING

- 87 patients referred to the Pediatric Heart Valve Center since September 2020 were reviewed
 - 8 aortic valve
- 4 truncal valve
- 3 neo-aortic valve
- 1 tricuspid valve

• Valve center consult notes and preoperative echo reports were reviewed & compared with operative notes (Table 1)

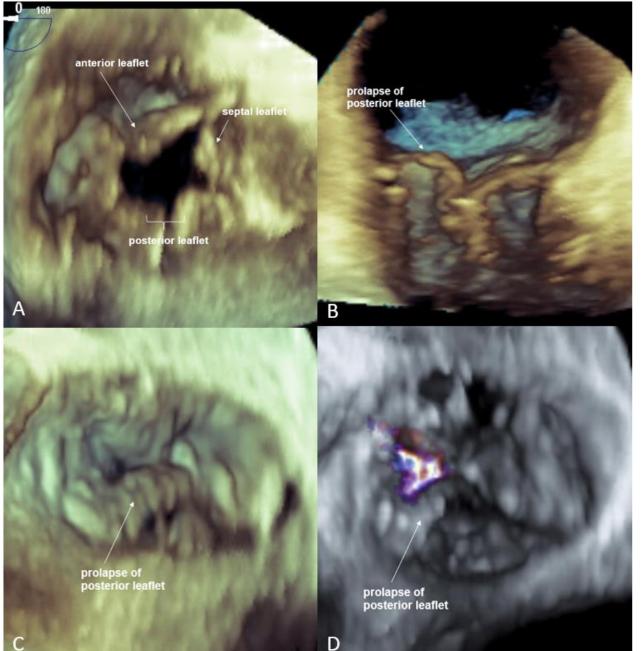
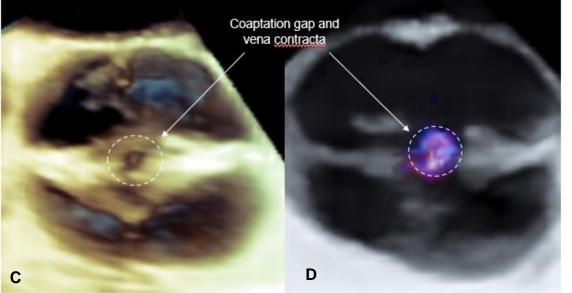



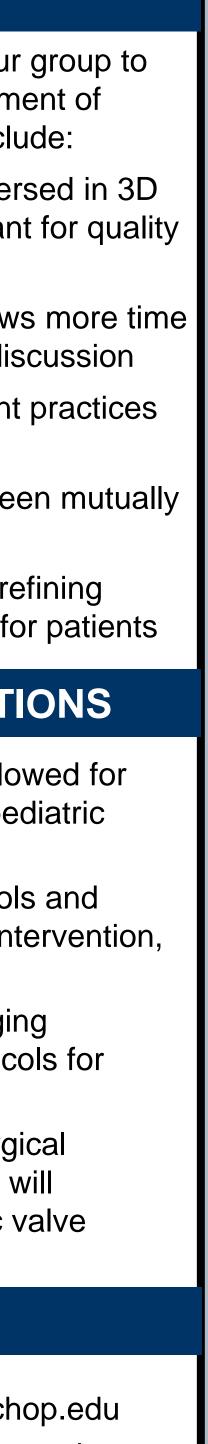
Table 1. Preoperative and intraoperative findings in a random, representative sample of valve center nationts

Sai	sample of valve center patients				
	Medical History	Age, sex	Valve Center description based on preoperative echo findings	Intraoperative findings	
A	Tetralogy of Fallot status post repair with progressive aortic insufficiency	12 yr, F	Trileaflet valve, R coronary cusp with perforation near annulus	Perforation at base of right coronary cusp (<i>Figure 1</i>)	
В	Hypoplastic left heart syndrome palliated to lateral tunnel Fontan with moderate to severe tricuspid regurgitation	14 yr, M	Prolapse of anterior and posterior leaflets, shortened septal leaflet	Posterior leaflet redundant, dysplastic, and prolapsing; diminutive septal leaflet; anterior leaflet appeared largely normal (<i>Figure 2</i>)	
С	Truncus arteriosus status post repair with truncal valve insufficiency	9 yr, F	Quadricuspid valve, fusion of right/left and between two "non" commissures, thick/rolled leaflets	Quadricuspid valve, fusion of right anterior/posterior and left anterior/posterior leaflets, thickened valve (Figure 3)	
D	Trisomy 21, VSD, cleft mitral valve, pulmonary stenosis status post patch VSD closure, & RVOT augmentation with progressive mitral regurgitation	16 mo, F	Prolapse of anterior leaflet (A2, some A3), appearance of mitral valve cleft may be due to prolapse, not true cleft	Anterior leaflet redundant and prolapsed along A1/A2, posterior leaflet appeared usual, no mitral valve cleft	
E	Progressive aortic insufficiency	14 yr, F	Trileaflet valve, noncoronary cusp deficient, abnormal motion, prolapse; right and left cusps normal	Perforation of noncoronary leaflet	
F	Mitral valve prolapse with severe mitral regurgitation	4 yr, M	Prolapse of anterior leaflet, restrictive motion of posterior leaflet	Dysplastic valve, severe prolapse of A2, chordal support to A1 fibrotic	

Figure 3. 3D TEE images demonstrating an enface view of the truncal valve in patient A. The valve is quadricuspid. With valve opening, fusion of the right anterior/posterior and left anterior/posterior commissures is observed (A, B). With valve closure, there is central coaptation defect through which the jet of insufficiency originates (C, D). RA=right anterior, RP= right posterior, LA=left anterior ,LP= left posterior

FINDINGS

A dedicated, multidisciplinary team has allowed our group to build skills and experience in evaluation and treatment of pediatric heart valve disease. Lessons learned include:


- Sedation performed by an anesthesiologist well-versed in 3D acquisition breath holds and positioning is important for quality of image acquisition
- 3D imaging, including TEE, in advance of OR allows more time for cropping, interpretation, and multidisciplinary discussion
- Educational conferences allow for review of current practices and team-initiated improvement
- Partnering with clinical research colleagues has been mutually beneficial and has advanced clinical applications
- Collaboration with invested surgeons is crucial to refining imaging techniques & expanding surgical options for patients

CONCLUSIONS & FUTURE DIRECTIONS

- Creation of a Pediatric Heart Valve Center has allowed for improved collaboration and surgical planning in pediatric valve disease.
- Continued efforts will refine valve imaging protocols and enable streamlined discussions regarding valve intervention, with the goal of improving outcomes.
- Increased collaboration with cross-sectional imaging colleagues will allow for creation of CT/MRI protocols for valve imaging.
- Research efforts in interventional techniques, surgical approaches, and advanced imaging including 4D will continue to improve our management of pediatric valve disease.

CORRESPONDANCE TO:

Meghan Metcalf, MD; email: metcalfm@email.chop.edu Lindsay Rogers, MD: email: rogersl1@email.chop.edu

